Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling
نویسندگان
چکیده
منابع مشابه
Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling.
Homeostatic synaptic plasticity (HSP) has been implicated in the development of hyperexcitability and epileptic seizures following traumatic brain injury (TBI). Our in vivo experimental studies in cats revealed that the severity of TBI-mediated epileptogenesis depends on the age of the animal. To characterize mechanisms of these differences, we studied the properties of the TBI-induced epilepto...
متن کاملHomeostatic synaptic scaling: molecular regulators of synaptic
The ability of neurons and circuits to maintain their excitability and activity levels within the appropriate dynamic range by homeostatic mechanisms is fundamental for brain function. Neuronal hyperactivity, for instance, could cause seizures. One such homeostatic process is synaptic scaling, also known as synaptic homeostasis. It involves a negative feedback process by which neurons adjust (...
متن کاملEpileptogenesis due to glia-mediated synaptic scaling.
Homeostatic regulation of neuronal activity is fundamental for the stable functioning of the cerebral cortex. One form of homeostatic synaptic scaling has been recently shown to be mediated by glial cells that interact with neurons through the diffusible messenger tumour necrosis factor-alpha (TNF-alpha). Interestingly, TNF-alpha is also used by the immune system as a pro-inflammatory messenger...
متن کاملHomeostatic synaptic scaling in self-organizing maps
Various forms of the self-organizing map (SOM) have been proposed as models of cortical development [Choe Y., Miikkulainen R., (2004). Contour integration and segmentation with self-organized lateral connections. Biological Cybernetics, 90, 75-88; Kohonen T., (2001). Self-organizing maps (3rd ed.). Springer; Sirosh J., Miikkulainen R., (1997). Topographic receptive fields and patterned lateral ...
متن کاملHomeostatic Synaptic Scaling Is Regulated by Protein SUMOylation*
Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2015
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.5038-14.2015